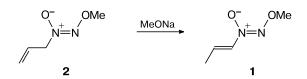
Synthesis of methoxy-NNO-azoxyethene

I. N. Zyuzin, * D. B. Lempert, and G. N. Nechiporenko


Institute of Problems of Chemical Physics, Russian Federation, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (096) 515 3588. E-mail: zyuzin@icp.ac.ru

The first representative of the alkoxy-NNO-azoxy olefin series, viz., methoxy-NNO-azoxyethene, was synthesized by the pyrolysis of 1,1-bis(methoxy-NNO-azoxy)ethane.

Key words: alkoxy-*NNO*-azoxy olefins, methoxy-*NNO*-azoxyethene, 1,1-bis(methoxy-*NNO*-azoxy)ethane, pyrolysis, UV spectra.

Five alkoxy-NNO-azoxy olefins with the C=C double bond at the N-oxide nitrogen atom are known, and four of them are styrene derivatives. ^{1,2} Only one such azoxy olefin containing no aromatic substituent, viz., 1-(methoxy-NNO-azoxy)prop-1-ene (1), was synthesized by the isomerization of 3-(methoxy-NNO-azoxy)prop-1-ene (2) (Scheme 1).

Scheme 1

The simplest azoxy olefin (methoxy-NNO-azoxy-ethene (3)) cannot be synthesized by this method. However, it is ethene 3 which is the most interesting as a monomer for the preparation of power-rich polymeric compositions.⁴

The purpose of this work was to study the possibility of synthesis of compound 3 using the vacuum pyrolysis of 1,1-bis(methoxy-NNO-azoxy)ethane (4)⁵ (Scheme 2).

Scheme 2

The formation of β -(methoxy-NNO-azoxy)styrene by the pyrolysis of 1,1-bis(methoxy-NNO-azoxy)-2-phenylethane² and a ~100% yield of isobutylene in the thermal decomposition of 2-methyl-2-(methoxy-NNO-azoxy)propane in the gas phase⁶ indicated that this reaction is possible in principle.

We found that the thermolysis of compound 4 affords, indeed, azoxy olefin 3. As can be seen from the data in Table 1, the chromatographic yield of compound 3 in the 220–272 °C temperature interval changes slightly (71–75%). At lower temperatures, the yield decreases due to a low conversion at an appropriate duration of the process. However, the yield based on the decomposed starting compound 4 remains high. At temperatures higher than 272 °C, the yield decreases due to the destruction of product 3. The chromatographic yield is highest at 260 °C and a duration of the reaction of 20 min (75%). The preparative synthesis of compound 3 in 53% yield was carried out under these conditions.

Compound 3 is a colorless liquid with a strong smell. It is indefinitely soluble in water EtOH, Me_2CO , and Et_2O , is immiscible with hexane, and discolors a solution of Br_2 in $CHCl_3$.

The substantial shift of the band of the π - π *-transition in the UV spectrum of compound 3 ($\lambda_{max} = 250$ nm) toward the long-wave region compared to those of

Table 1. Yields of compound 3 under different pyrolysis conditions

T/°C	Duration of reaction	Degree of conversion	Yield*
168	6.5 h	11	8 (70)
190	10 h	84	53 (70)
220	2.3 h	99	71 (71)
230	1.3 h	100	74 (74)
240	1.0 h	100	74 (74)
250	30 min	100	74 (74)
260	20 min	100	75 (75)
272	13 min	100	72 (72)
285	8 min	100	65 (65)
300	5 min	100	59 (59)

^{*}The yield of compound 3 based on reacted compound 4 is presented in parentheses.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1354—1356, June, 2003.

methoxy-*NNO*-azoxymethane (5) $(\lambda_{max} = 234 \text{ nm})^7$ and allyloxy-*NNO*-azoxymethane (6) $(\lambda_{max} = 234 \text{ nm})^8$ indicates the $\pi-\pi$ -conjugation between the six-electron π -system of the N_2O_2 group⁹ and the C=C bond.

The hydroxydiazeneoxide group can be presented by a set of four resonance forms (Scheme 3). In the resonance form 11, the O...O bond designates the π -interaction without a σ -bond. Probably, valent forms 8 and 9 contribute mainly to the conjugation with the C=C bond in molecule 3.

Scheme 3

Almost the same great shift of the band of the $\pi-\pi^*$ -transition in the UV spectrum was detected for the isomer of compound 3: vinyloxy-*NNO*-azoxymethane (7) ($\lambda_{\text{max}} = 248 \text{ nm}$). However, resonance forms 10 and 11 are involved in conjugation with the C=C bond in this case.

The IR spectrum of compound 3 exhibits intense absorption bands at 1290, 1390, and 1480 cm⁻¹ characteristic of the N_2O_2 group. ^{1,3,7–10} The band of stretching vibrations of the C=C bond with a medium intensity lies ¹¹ at 1655 cm⁻¹.

In the 1 H NMR spectrum of compound 3, the singlet of the methoxy group (δ 4.15) demonstrates a slight downfield shift compared to methoxy-*NNO*-azoxyalkanes (δ 3.89—3.95), whose 1 H NMR spectra were measured under the same conditions. The methoxy-*NNO*-azoxy group in its electron influence resembles much its isoelectronic nitro group. Therefore, these groups should deshield the ethenic protons in a similar manner, despite different conditions of spectra recording. The chemical shifts of the *trans*-, *cis*-, and *gem*-protons of the vinyl group in nitroethene (a 10% solution in CCl₄) are equal 12 to 5.87, 6.55,

and 7.12 ppm, whereas those in compound 3 in CDCl₃ and in the absence of a solvent are equal to 5.37, 6.25, 6.93 and 5.59, 6.32, 7.31 ppm, respectively. This assignment of the vinylic protons of compound 3 agrees with the spin-spin coupling constants (see Experimental). The spin-spin coupling constant of the atoms in the *trans*-position (15 Hz), as for nitroethene (15.0 Hz), ¹² is much lower than that for unsubstituted ethene (19 Hz) due to a decrease in the electron density around the vinylic protons under the effect of the electron-acceptor group. ¹²

In the 13 C NMR spectrum of compound **3**, the signal of the MeO group at δ 61.5 exists in the region characteristic of several other methoxy-*NNO*-azoxy compounds (δ 60–63 in CDCl₃). $^{13-15}$ The 13 C NMR signals of the vinyl group were assigned by the comparison with the spectroscopic characteristics of nitro olefins. 12

The ¹⁴N NMR spectrum of compound 3 exhibits a relatively narrow ($\Delta v_{1/2} \sim 80$ Hz) signal at $\delta - 66.8$ characteristic of the *N*-oxide nitrogen atom, ¹³ which was described for several other alkoxy-*NNO*-azoxy compounds ($\delta = -66 - 71$, $\Delta v_{1/2} = 80 - 220$ Hz). ^{13,14}

In the mass spectrum of compound 3, the peak of the molecular ion is most intense, and fragmentation agrees with the published data. ^1,16 In particular, the most intense peaks of ions in the mass spectrum of β -(ethoxy-NNO-azoxy)styrene [M]+, [M - Et]+, [M - EtNO]+, and [EtNO]+ are similar to the most intense peaks in the spectrum of compound 3.

Thus, the first member of the alkoxy-*NNO*-azoxy olefin series, *viz.*, methoxy-*NNO*-azoxyethene (3), was synthesized by the pyrolysis of 1,1-bis(methoxy-*NNO*azoxy)ethane (4) in melt.

Experimental

The IR spectrum was recorded with a Specord IR-75 spectrometer (in thin film). The UV spectrum was recorded with an Specord M-40 spectrometer (solutions in H₂O). ¹H (200.13 MHz), ¹³C (50.32 MHz), and ¹⁴N (21.69 MHz) NMR spectra were obtained on a Bruker AC-200 spectrometer (in CDCl₃). Chemical shifts for ¹H and ¹³C were measured relatively to the solvent signals (7.25 and 77.0 MHz), and those for ¹⁴N were measured relatively to the external standard (MeNO₂). The ¹H NMR spectrum without a solvent was recorded with an NMR spectrometer (294 MHz) designed and manufactured at the Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) using Me₄Si as the internal standard (signals of protons were assigned by analogy, see above). The mass spectrum was obtained with an MX-1320 spectrometer (EI, 70 eV).

The yield of compound 3 was studied in sealed ~180-mL glass vessels with a falcate membrane, using a weighed sample of compound 4 of ~150 mg. The reaction course was monitored by a change in the pressure of gaseous products. ⁶ The temperature in these experiments and during the synthesis of compound 3 was maintained with an accuracy of ± 0.2 K using an air thermostat designed and manufactured at the IPCP RAS and measured

with a calibrated chromel—copel thermocouple. The yield of compound 3 was determined using GLC with an LKhM-8MD chromatograph (column packed with 15% Carbowax-20M on Chromaton N-AW DMCS, N_2 as the carrier gas, 30 mL min $^{-1}$, temperature of the column 150 °C, temperature of the evaporator 200 °C), $\tau_{sp}=6.6$ min, PhCN as the internal standard, $\tau_{sp}=5.25$ min.

1,1-Bis(methoxy-NNO-azoxy)ethane (4) was synthesized according to a modified procedure.⁵ Nitrogen oxide¹⁷ was passed through a solution of NaOH (98%, 245 g, 6 mol) and ethyl methyl ketone (400 mL, 322 g, 4.47 mol, 2.23 equiv.) in MeOH (2.5 L) with vigorous stirring and cooling with such a rate that NO was completely absorbed, maintaining the temperature at 20-25 °C. A precipitate began to form after 20 min, and after 2 h the absorption of NO was sharply slowed down. The reaction mixture was additionally stirred in an NO atmosphere for 3 h at ~20 °C and neutralized by phenolphthalein with AcOH (5 mL). The precipitate was filtered off, washed with MeOH (1 L) and Et₂O (1 L), and dried in air at the relative humidity not higher than 60% (the product smeared at the humidity higher than 70%). Thus obtained **1,1-bis(nitrosohydroxylamino)ethane** disodium salt (490 g) was suspended without purification in DMF (1 L), and Na₂CO₃ (53 g, 0.5 mol) was added. Then dimethyl sulfate (560 mL, 5.8 mol) was gradually added with stirring and cooling for 3.5 h, maintaining the temperature at 20-25 °C. Plentiful gas evolution was observed, and the reaction mixture darkened and homogenized, except for a minor precipitate of Na₂CO₃. The mixture was additionally stirred for 0.5 h at 20 °C and for 0.5 h at 50 °C, and the solvent was distilled off on a rotary evaporator at 20-95 °C (8 Torr). In this distillation, the target product was not distilled off ($\leq 0.1\%$). Attention! The byproduct, cancerogenic N-nitrosodimethylamine, was distilled off along with DMF. The residue was dissolved in water (1 L) and extracted with CHCl₃ (400 mL) for 15 h in a liquid-liquid extractor for the heavy organic phase. The extract (~0.5 L) was passed through a column packed with silica gel (100–160 μm, 100 g), washed with CHCl₃ (250 mL), and evaporated in vacuo. The residue was recrystallized from EtOH (200 mL). The yield of the product was 118 g (16% based on ethyl methyl ketone), m.p. 72-74 °C (cf. Ref. 5: m.p. 75-75.5 °C). After recrystallization from an H₂O-MeOH mixture, the product (92 g) was obtained with m.p. 75-75.5 °C.

Methoxy-NNO-azoxyethene (3). A 4-L glass vessel containing compound 4 (7 g, 68.5 mmol, the maximum amount for which the pressure of the pyrolysis products at 260 °C does not exceed 1.5 atm) was evacuated with an oil pump (~0.1 Torr). sealed off and heated at 260 °C for 20 min, cooled, and opened. The condensate was washed off with CHCl₃ (30 mL). The solvent was distilled off from the combined washings of five analogous experiments, and the residue was doubly distilled in vacuo. The yield of the product was 10.6 g (53%), b.p. 66-68 °C (8 Torr), $n_{\rm D}^{20}$ 1.4898, d_4^{20} 1.111. UV, $\lambda_{\rm max}/{\rm nm}$ (ϵ): 250 (11170). IR, v/cm^{-1} : 665, 745, 960, 1020, 1065, 1080, 1210, 1290 (N₂O₂), 1390 (N₂O₂), 1480 (N₂O₂), 1655 (C=C), 2845, 2960, 3000, 3115, 3140. ¹H NMR (without solvent, δ: 4.15 (s, 3 H, Me); 5.59 (d, 1 H, H_b , $J_{a,b} = 7.5$ Hz); 6.32 (d, 1 H, H_c , $J_{a,c} = 15$ Hz); 7.31 (dd, 1 H, H_a, $J_{a,b} = 7.5$ Hz, $J_{a,c} = 15$ Hz). ¹H NMR (CDCl₃), δ : 4.02 (s, 3 H, Me); 5.37 (d, 1 H, H_b, $J_{a,b} = 8$ Hz); 6.25 (d, 1 H, H_c, $J_{a,c}$ = 15 Hz); 6.93 (dd, 1 H, H_a, $J_{a,b}$ = 8 Hz, $J_{a,c}$ = 15 Hz). ¹³C NMR, δ : 61.5 (CH₃O); 113.6 (=CHN); 136.4 (CH₂=). ¹⁴N NMR, δ , ($\Delta v_{1/2}/Hz$)): -66.8 (~80). MS,

m/z (I_{rel} (%)): 102 [M]⁺ (100), 87 [M – Me]⁺ (85), 58 (14), 57 [M – MeNO]⁺ (70), 46 (6), 45 [MeNO]⁺ (16), 43 (11), 42 (8), 41 (6), 40 (4), 32 (6), 31 (16), 30 (38), 29 (19), 28 (47), 27 (59).

The authors thank G. V. Lagodzinskaya and D. E. Dmitriev for recording NMR spectra.

References

- I. N. Zyuzin, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1263 [Russ. Chem. Bull., 1998, 47, 1231 (Engl. Transl.)].
- R. B. Woodrward and C. Wintner, Tetrahedron Lett., 1969, 32, 2689.
- O. A. Luk'yanov and N. I. Shlykova, *Izv. Akad. Nauk, Ser. khim.*, 1998, 2262 [*Russ. Chem. Bull.*, 1998, 47, 2193 (Engl. Transl.)].
- 4. I. N. Zyuzin, A. A. Baturina, V. P. Grachev, D. B. Lempert, and G. N. Nechiporenko, *Tez. dokl. Vseros. nauchn. konf. "Energeticheskie kondensirovannye sistemy" (Chernogolovka, October 28—31, 2002)*, Chernogolovka, 2002, 38 (in Russian).
- L. O. Atovmyan, N. I. Golovina, and I. N. Zyuzin, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1987, 1309 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 1205 (Engl. Transl.)].
- I. N. Zyuzin, D. B. Lempert, and G. N. Nechiporenko, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, 1506 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 1329 (Engl. Transl.)].
- I. N. Zyuzin and D. B. Lempert, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, 831 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1985, 34, 753 (Engl. Transl.)].
- 8. I. N. Zyuzin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, 2626 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1985, **34**, 2433 (Engl. Transl.)].
- N. Zyuzin, G. N. Nechiporenko, N. I. Golovina, R. F. Trofimova, and M. V. Loginova, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1486 [Russ. Chem. Bull., 1997, 46, 1421 (Engl. Transl.)].
- I. N. Zyuzin and G. N. Nechiporenko, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 2390 [*Russ. Chem. Bull.*, 1998, 47, 2317 (Engl. Transl.)].
- L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Methuen, London, 1954.
- 12. V. V. Perekalin, A. S. Sopova, and E. S. Lipina, *Nepredel 'nye nitrosoedineniya [Unsaturated Nitro Compounds*], Khimiya, Leningrad, 1982, pp. 337; 363 (in Russian).
- O. A. Luk'yanov, G. A. Smirnov, and V. V. Sevost'yanova, *Izv. Akad. Nauk, Ser. Khim.*, 1995, 1534 [Russ. Chem. Bull., 1995, 44, 1474 (Engl. Transl.)].
- O. A. Luk'yanov, G. A. Smirnov, and S. V. Nikitin, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1996 [*Russ. Chem. Bull.*, 1998, 47, 1940 (Engl. Transl.)].
- Yu. A. Red'kin, G. A. Marchenko, L. N. Punegova, G. S. Stepanov, and I. V. Tselinskii, *Zh. Org. Khim.*, 1988, 24, 495
 [J. Org. Chem. USSR, 1988, 24 (Engl. Transl.)].
- I. G. Zenkevich, V. N. Yandovskii, Yu. P. Artsibasheva, and V. S. Tselinskii, *Zh. Org. Khim.*, 1987, 23, 3 [*J. Org. Chem. USSR*, 1987, 23 (Engl. Transl.)].
- 17. Yu. V. Karyakin and I. I. Angelov, *Chistye khimicheskie veshchestva* [*Pure Chemical Substances*], Khimiya, Moscow, 1974, p. 24 (in Russian).

Received July 10, 2002; in revised form March 13, 2003